

#49005E Revised on Nov 17, 2011

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

Koki no-clean LEAD FREE solder paste

Koki no-clean LEAD FREE solder paste

Low Melting Point Lead Free Solder Paste

TB48-M742 & T4AB58-M742

Product information

This Product Information contains product performance assessed strictly according to our own test procedures and may not be compatible with results at end-users.

Contents

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

Features

Low melting point (138 °C)

Product Features

- **PERFECT MELTING** and wetting at super fine pitch (>0.4mm pitch) and micro components (>0.3mm dia CSP, 0603 chip).
- Specially formulated flux chemistry ensures extremely **LOW VOIDING** with CSPs and broad contact area components.

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

Specifications

Application		Printing - Stencil		
Product		T4AB58-M742	TB48-M742	
Alloy	Alloy Composition (%)	Sn-Ag0.4-Bi57.6	Sn-Bi58	
	Melting Point(°C)	138	138	
	Shape	Spherical		
	Particle size (um)	20 - 38	20 - 45	
Flux	Halide Content (%)	0		
	Flux Type	ROL0*3		
Product	Flux Content (%)	10.0±1.0		
	Viscosity*1 (Pa.s)	190±30		
	Cupper plate corrosion*2	Passed		
	Tack Time	> 16 hours		
	Shelf Life(below 10°C)	6 months		

1. Viscosity: Malcom spiral type viscometer, PCU-205 at 25°C 10rpm

2. Flux type : According to IPC J-STD-004A3. Copper plate corrosion : In accordance with IPC J-STD-004A

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

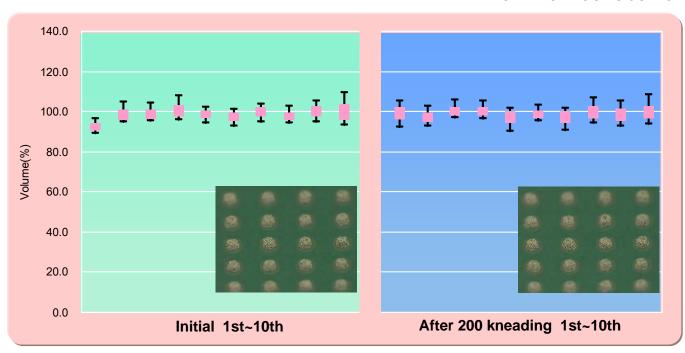
Handling guide

Continual printability

Print parameters

Stencil: 0.12mm thickness, laser cut stenct Model YVP-Xg YAMAHA Motor Printer:

Squeegee: Metal blade, Angle - 60°


Print speed: 40 mm/sec

Atmosphere: 24.5~25.5° C (50~60%RH)

Test pattern: MBGA pad pattern - Diameter 0.30 mm

SPI: KOHYOUNG aSPire

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

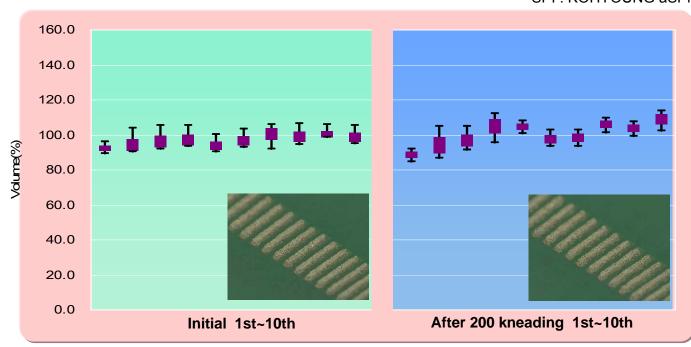
Handling guide

Continual printability

Print parameters

Stencil: 0.12mm thickness, laser cut stencl
Printer: Model YVP-Xg YAMAHA Motor

Squeegee: Metal blade, Angle - 60°


Print speed: 40 mm/sec

Atmosphere: 24.5~25.5° C (50~60%RH)

Test pattern: QFP pad pattern - Width 0.20 mm Length 1.5 mm Distance 0.2 mm

SPI: KOHYOUNG aSPire

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

Intermittent printability (Stencil idle time)

• Print solder paste continuously and stop to idle the paste for 60,min. intervals, and resume the printing and observe the 1st print result to verify intermittent printability.

• Squeegee : Metal blades

• Squeegee angle : 60°

Squeegee speed : 40mm/sec.Print stroke : 300mm

• Printing environment : 25+/-1°C, 50+/-10%RH

• Test pattern : QFP pad pattern - Width 0.20 mm Length 1.5 mm Distance 0.2 mm

MBGA pad pattern - Diameter 0.25 0.30 mm

Test pattern	Initial	After 15min	After 30min. 1st print	After 30min. 2 nd print
0.3mm dia.				
0.4mm pitch				

When printing interval are 15 min or more, please do temporary printing.

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

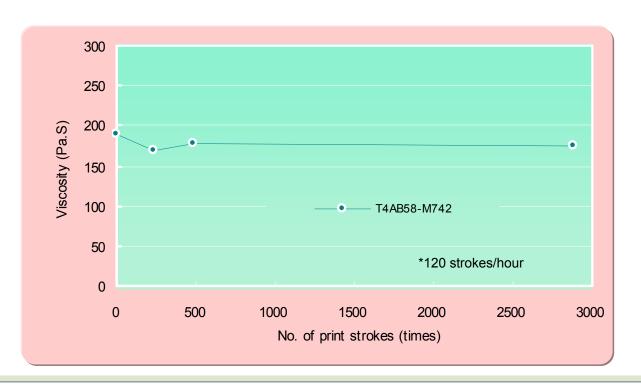
Voiding

Voltage applied SIR

Other properties

Handling guide

Viscosity variation


• Print (knead) solder paste on the sealed-up stencil continually up for 24 hours to observe viscosity variation.

• Squeegee : Metal blades

• Squeegee angle : 60°

Squeegee speed : 30mm/sec.Print stroke : 300mm

• Printing environment : 25+/-1°C, 60+/-10%RH

A newly developed flux formula has succeeded to realize consistent long term printability by preventing excess viscosity drop due to shear thinning and excess increase due to chemical reaction between solder powder and flux during print rolling.

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

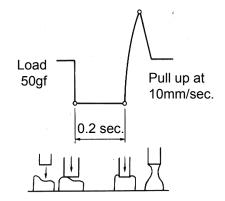
Handling guide

Tack time

• Stencil: 0.2mm thick, 6.5mm dia. aperture

Measurement instrument : Malcom tackimeter TK-1

Probe pressure: 50gf
Pressurizing time: 0.2sec
Pull speed: 10mm/sec.


• Test method : In accordance with JIS Z 3284

• Test environment : 25+/-1°C, 50+/-10%RH

Tensile strength = Tack force

Unique solvent system successfully assures sufficient tack time.

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

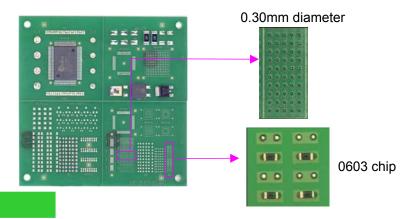
Super fine pattern wetting

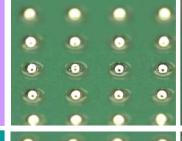
Glass epoxy FR-4 Material:

OSP Surface treatment :

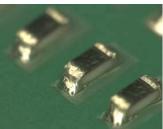
0.12mm (laser cut) Stencil thickness: Pad size : 0.30mm diameter

0603 chip. Component:

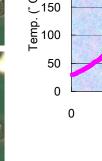

• Stencil aperture : 100% aperture opening to pad

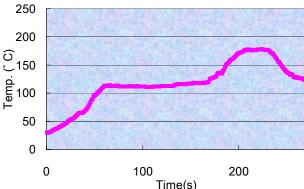

Hot air convection Heat source :

5 pre-heat zones +2 peak zones Zone structure :


 Atmosphere : Air

• Reflow profile : See below




0.30mm dia.

0603R

CHALLENGING NEW TECHNOLOGIES

After 4-hour kneading on sealed-up stencil

Larger relative surface areas of solder paste exposed due to miniaturization of components (CSP, 0603 chips), often cause incomplete melting due to excess oxidation during the reflow. An improved flux formula ensures complete coalescence by minimum deterioration of barrier performances.

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

Voiding

Glass epoxy FR-4 Material:

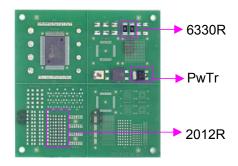
 Surface treatment : **OSP**

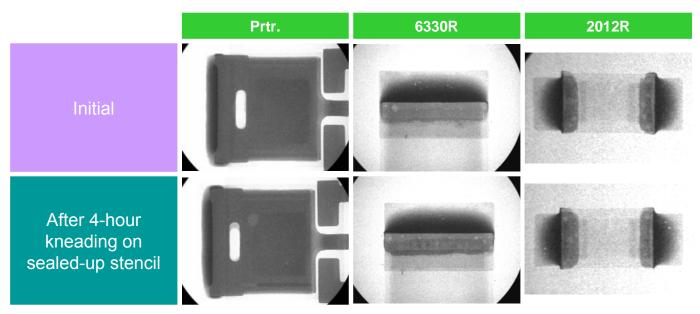
0.12mm (laser cut) Stencil thickness:

• Stencil aperture : 100% aperture opening to pad

Components

100% Sn plated SAC305 PwTr. 6330R, 2012R,


1.0mm pitch BGA:


Hot air convection Heat source :

 Zone structure : 5 pre-heat zones +2 peak zones

Atmosphere :

• Reflow profile : Same as "Super fine pattern wetting"

Contents

Features

Specifications

Continual printability

Intermittent printability

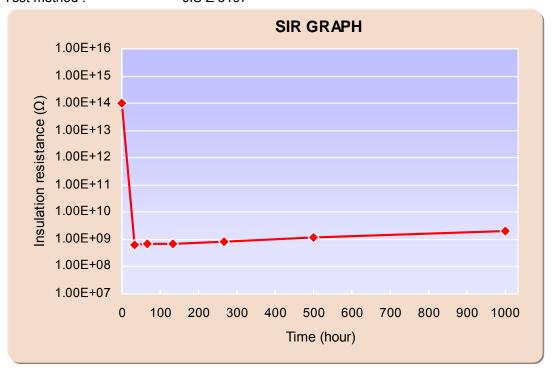
Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR


Other properties

Handling guide

Voltage applied surface insulation resistance

 Test conditions: $85\pm2^{\circ}C \times 85^{\circ}RH$ for 1000 hours

• Stencil thickness : 100 micron • Comb type electrode : JIS type-II Measurement voltage : DC100V Voltage applied : DC50V JIS Z 3197 Test method :

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide

Other	properties
-------	------------

Item	Result	Method
Heat slump	0.2mm pass	JIS Z 3284
Solder balling	Category 3	JIS Z 3284
Copper mirror corrosion	Type L	JIS Z 3284 IPC-TM-650
Copper plate corrosion	Pass	IPC-TM-650, JIS Z 3284
Silver chromate paper	Pass	IPC-TM-650
Halide content	0	IPC-TM-650

Contents

Features

Specifications

Continual printability

Intermittent printability

Viscosity variation

Tack time

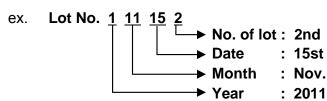
Super fine pattern wetting

Voiding

Voltage applied SIR

Other properties

Handling guide


Handling guide

- 1. Printing
- 1) Recommended printing parameters
 - (1) Squeegee
 - 1. Kind : Flat
 - 2. Material : Rubber or metal blade
 - 3. Angle : 60~70° (rubber) or metal blade
 - 4. Pressure : Lowest
 - 5. Squeegee speed : 20~80mm/sec.
 - (2) Stencil
 - 1. Thickness : 150~100μm for 0.65~0.4mm pitch pattern
 - 2. Type : : Laser or electroform 3. Separation speed : 7.0~10.0mm/sec.
 - 4. Snap-off distance : 0mm
 - (3) Ambiance
 - 1. Temperature : 22~25°C
 2. Humidity : 40~60%RH
 - 3. Air draft : Air draft in the printer badly affects stencil life and tack performance of
 - solder pastes.

2. Shelf life

0~10°C : 6 months from manufacturing date

* Manufacturing date can be obtained from the lot number

Contents

Features

Specifications

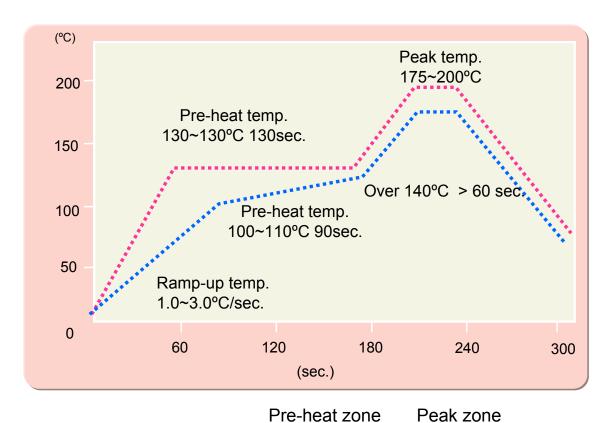
Continual printability

Intermittent printability

Viscosity variation

Tack time

Super fine pattern wetting


Voiding

Voltage applied SIR

Other properties

Handling guide

Handling guide - Recommended reflow profile

Lower limit: 100~110°C 90sec 175°C
Upper limit: 130~130°C 130sec 200°C

Lowering the pre-heat and peak temperatures could lead to a drop in electrical reliability.

